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Mathematical formalism of the low rank perturbation method (LRP) is applied to the vibra-
tional isotope effect in the harmonic approximation. A pair of twon-atom isotopic molecules
A andB which are identical except for isotopic substitutions atρ atomic sites is considered.
Relations which express vibrational frequenciesωk and normal modes�k of the perturbed
isotopic moleculeB in terms of the vibrational frequenciesνi and normal modes
i of the
unperturbed moleculeA are derived. In these relations complete specification of the unper-
turbed normal modes
i is not required. Only amplitudes〈τ |
i 〉 of normal modes
i at
sitesτ affected by the isotopic substitution are needed.
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1. Introduction

The aim of this and the following paper is to provide a simple method for the calcu-
lation of the vibrational isotope effect in the harmonic approximation [1]. In this approx-
imation one uses the classical model of the molecule where the nuclei are represented
by mathematical points with masses. The displacement of nuclei from equilibrium posi-
tions can be described by Cartesian coordinates. If the molecule containsn nuclei, there
are 3n such generic coordinates:

ξ1, ξ2, . . . , ξ3n.

One can express the potential and the kinetic energy in terms of these coordinates.
In the harmonic approximation [1] the potential energy is

V =
∑
i<j

fij ξiξj , (1a)

wherefij = (∂2V/∂ξi∂ξj )0 are force constants expressed in Cartesian coordinates.
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Kinetic energy expressed in terms of Cartesian displacements from equilibria is

T = 1

2

3n∑
i

mi

(
dξi
dt

)2

. (1b)

The solution of the above sistem consisting ofn masses connected by harmonic
forces leads to the generalised eigenvalue equation

F|
i〉 = λiM|
i〉, (2)

whereF is a 3n×3n force field matrix with matrix elementsfij , whileM is a 3n× 3n di-
agonal matrix which on a diagonal contains massesmi. Eigenvaluesλi of the eigenvalue
equation (2) are related to the vibrational frequenciesνi by

λi = 4π2ν2
i . (2′)

Without loss of generality one can assume eigenstates|
i〉 to be orthonormalized
according to

〈
i |M|
j 〉 = δi,j . (3)

Instead of generic indicesi andj we will use Greek lettersα andβ in order to
label different atoms, and indicess andp in order to denotex-, y- andz-coordinates.
Using this convention operatorsF andM can be written in the form

F =
n∑
αβ

3∑
sp

fαs,βp|αs〉〈βp|, M =
n∑
α

mα

3∑
s

|αs〉〈αs|, (4)

where|αs〉 is a ket vector, which denotes a unit displacement ofα atom in thesth co-
ordinate direction. These unit displacements are orthonormalized according to

〈αs|βp〉 = δαβδsp (5a)

and they are complete: ∑
αs

|αs〉〈αs| = I. (5b)

We will also use explicit notation

|αx〉 ≡ |α1〉, |αy〉 ≡ |α2〉, |αz〉 ≡ |α3〉
in order to denote unit displacements ofα atom inx-, y- andz-direction, respectively.

If in the original molecule some atoms are replaced by an isotope, to a very high
degree of accuracy force field is not affected by those replacements [1]. In this approxi-
mation the perturbed equation describing isotopicaly substituted molecule is

F|�k〉 = εk(M+%M)|�k〉, (6)
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where%M represents perturbation. We will label atoms that are affected by isotope
substitution with Greek lettersµ andτ . If there areρ such atoms, perturbation%M can
be written in the form

%M =
ρ∑
µ

%mµ

3∑
s

|µs〉〈µs|, (7)

where%mµ is isotope mass change of atomµ. Perturbed frequenciesωk are related to
the perturbed eigenvaluesεk by

εk = 4π2ω2
k. (6′)

Eigenstates|
i〉 and|�k〉 have physical meaning of vibrations, and, therefore, we
will use interchangeably both terms. When emphasis is on mathematics we will use term
eigenstates, and when emphasis is on physics we will use termvibrations.

2. Multiple isotopic substitutions

One can solve perturbed eigenvalue equation (6) using the low rank perturbation
(LRP) approach [2,3]. In this approach one expresses the eigenvalues and the eigenstates
of the generalised perturbed eigenvalue equation in terms of the eigenvalues and eigen-
states of the generalised unperturbed eigenvalue equation. One also makes a distinction
betweencardinalandsingulareigenvalues and eigenstates of the perturbed equation. By
definition, an eigenvalueεk of the perturbed equation is “cardinal” if it differs from all
the eigenvaluesλi of the unperturbed equation. Otherwise it is singular [2,3]. In other
words,εk is cardinal ifεk /∈ {λi} and singular ifεk ∈ {λi}.

Concerning cardinal eigenvalues and eigenstates in appendix we prove the follow-
ing theorem:

Theorem 1 (Cardinal eigenvalues and vibrations). Let (2) be the unperturbed isotope
eigenvalue equation whereνi = √λi/2π are the unperturbed frequencies. Let further
the unperturbed vibrations be orthonormalized according to (3). Then:

(a) εk /∈ {λi} is an eigenvalue of the perturbed isotope eigenvalue equation (6) if and
only if it is a root of the equation

f (ε) ≡
∣∣∣∣�(ε)+ %M−1

ε

∣∣∣∣ = 0, (8)

where� is a 3ρ × 3ρ Hermitian matrix with matrix elements

�µs,τp(ε) = �∗τp,µs(ε) =
3n∑
i

〈µs|
i〉〈
i |τp〉
ε − λi , µ, τ = 1, . . . , ρ, s, p = 1,2,3,

(9a)
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while%M−1 is 3ρ × 3ρ diagonal matrix with matrix elements

%M−1
µs,τp =

δµτ δsp

%mτ

. (9b)

(b) Let εk /∈ {λi} be the perturbed eigenvalue. Each vibration�k corresponding to this
eigenvalue is of the form

|�k〉 =
3n∑
i

∑ρ
τ

∑3
p 〈
i|τp〉Cτp

εk − λi |
i〉, (10)

where the coefficientsCτp are the components of a 3ρ column vectorC which is the
(nontrivial) solution of the matrix equation[

�(εk)+ %M−1

εk

]
C = 0. (11)

In addition, coefficientsCτp satisfy

Cτp = −εk%mτ 〈τp|�k〉, τ = 1, . . . , ρ, p = 1,2,3. (12)

Conversely, ifεk /∈ {λi} is the perturbed eigenvalue, each state�k of the form (10),
where the coefficientsCτp are the (nontrivial) solution of the linear set (11), is the
corresponding vibration. Moreover, these coefficients satisfy (12).

Concerning degeneracy of the eigenvalueεk /∈ {λi} one finds (see appendix):

Lemma 1. Let εk /∈ {λi} be a cardinal eigenvalue of the perturbed isotope equation (6).
The degeneracy of this eigenvalue equals nullity of the matrix�(εk)+%M−1/εk.

In other words, degeneracy ofεk /∈ {λi} equals the number of linearly independent
solutionsC to the matrix equation (11).

The above theorem gives a complete solution concerning cardinalεk /∈ {λi} eigen-
values and vibrations of the perturbed isotope equation (6). Given the unperturbed fre-
quenciesνi = √λi/2π and unperturbed amplitudes〈τp|
i〉, one obtains perturbed
frequenciesωk = √εk/2π and perturbed vibrations�k. First, one has to find the root
or roots of the 3ρ × 3ρ determinant|�(ε)+%M−1/ε|. Each rootεk /∈ {λi} of this
determinant is an eigenvalue of (6). Once a particular eigenvalueεk /∈ {λi} is found,
and if the corresponding vibrations are required, one has to solve the homogenous set of
3ρ linear equations (11) in 3ρ unknownsCτp. Linearly independent solutionsC to this
equation generate linearly independent perturbed vibrations�k. In particular, each car-
dinal eigenvalueεk /∈ {λi} of the perturbed eigenvalue equation is at most 3ρ-degenerate.
This maximum possible degeneracy is achieved if and only if matrix�(εk)+%M−1/εk
is a null matrix.

In a similar way one derives the following theorem, which gives the solution for
the singular frequencies and vibrations.
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Theorem 2 (Singular eigenvalues and vibrations). Assume the same conditions as in
theorem 1. Letλj be aη-degenerate unperturbed eigenvalue, and denote the corre-
sponding vibrations with
jκ (κ = 1, . . . , η). Then:

(a) εk = λj is an eigenvalue of the perturbed eigenvalue equation (6) if and only ifλj
satisfies

f 0(λj ) ≡
∣∣∣∣�0(λj )+%M−1/λj W/λj

WT/λj 0η

∣∣∣∣ = 0, (13)

where�0(ε) is a 3ρ × 3ρ Hermitian matrix with matrix elements

�0
µs,τp(ε) =

3n∑
i(λi �=λj )

〈µs|
i〉〈
i |τp〉
ε − λi , (14a)

W is a 3ρ × η matrix with matrix elements

Wµs,κ = −〈µs|
jκ〉
%mµ

, µ = 1, . . . , ρ, s = 1,2,3, κ = 1, . . . , η, (14b)

%M−1 is a diagonal matrix with matrix elements (9b), and0η is aη× η null matrix.

(b) Let εk = λj be the perturbed eigenvalue. Each vibration�k corresponding to this
eigenvalue is of the form

|�k〉 =
3n∑

i(λi �=λj )

∑ρ
τ

∑3
p 〈
i |τp〉Cτp

εk − λi |
i〉 +
η∑
κ

Dκ |
jκ〉, (15)

where the coefficientsCτp andDκ form a (3ρ + η) column vector which is the
(nontrivial) solution of the matrix equation[

�0(λj )+%M−1/λj W/λj
WT/λj 0η

] [
C
D

]
= 0. (16)

In addition, these coefficients satisfy

Cτp = −εk%mτ 〈τp|�k〉, Dκ = 〈
jκ |M|�k〉,
τ = 1, . . . , ρ, p = 1,2,3, κ = 1, . . . , η. (17)

Conversely, ifεk is a singular eigenvalue of (6), each state�k of the form (15),
where the coefficientsCτp andDκ are the (nontrivial) solution of the linear set (16),
is the corresponding vibration.

Concerning degeneracy of singular eigenvalues one finds in analogy to lemma 1:

Lemma 2. Let εk = λj be a singular eigenvalue of the perturbed isotope equation (6).
The degeneracy of this eigenvalue equals the number of linearly independent solutions
[C,D] to the matrix equation (16).
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In particular, if the unperturbed eigenvalueλj is η-degenerate, perturbed eigen-
valueεk = λj is at most(3ρ + η)-degenerate. Also, ifη > 3ρ, perturbed eigenvalue
εk = λj is at least(η − 3ρ)-degenerate.

In order to analyse in more detail singular solutions given by theorem 2, it is con-
venient to distinguishactiveandpassiveunperturbed eigenvalues [2,3]. The notion of
active and passive eigenvalues is defined relative to the perturbation%M.

If the perturbation%M satisfies

%M|
jκ〉 = 0, κ = 1, . . . , η, (18a)

the eigenvalueλj is passive, otherwise it isactive. Thus, the eigenvalueλj is passive if
the invariant subspace associated with this eigenvalue is contained in a null subspace of
the operator%M.

Requirement (18a) is equivalent to

〈µs|
jκ〉 = 0, µ = 1, . . . , ρ, s = 1,2,3, κ = 1, . . . , η. (18b)

Physically, if the frequencyνj =
√
λj

/
2π is passive, all the corresponding un-

perturbed vibrations
jκ have amplitudes zero at each atom which is substituted by an
isotope. Such a vibration can not be affected by the isotopic substitutions. Hence, if the
unperturbed eigenvalueλj is passive, this eigenvalue is also an eigenvalue of the per-
turbed system, and the unperturbed vibrations
jκ are also vibrations of the perturbed
system.

One derives the same conclusion from the above theorem. In general, matrix�(ε)

is singular in the pointε = λj . However, if the eigenvalueλj is passive, matrix�(ε) is
regular in this point, and moreover, one finds�(ε) ≡ �0(ε). In addition, ifλj is passive,
matrix W vanishes, i.e.,W = 0. Hence, matrix equation (16) reduces to[

�(λj)+ %M−1

λj

]
C = 0. (16a)

Since there is no condition on the coefficientsDκ , these coefficients are arbitrary.
Hence, there are alwaysη solutions withC = 0 and with different coefficientsDκ

nonzero. According to (15), the corresponding perturbed vibrations coincide with unper-
turbed vibrations
jκ . Thus, ifλj is passive, it is a singular eigenvalue of the perturbed
equation, and each unperturbed vibration
jκ is also perturbed vibration.

In addition to the solutions withC = 0 which always exist ifλj is passive, rela-
tion (16a) can also have a nontrivial solution. Those additional solutions can be chosen
to satisfyD = 0. Further, relation (16a) is equivalent to the relation (11) withεk = λj .
Also with D = 0 eigenstate (15) reduces to the eigenstate (10). Thus, all such extra
solutions can be obtained from relations (8), (10) and (11). In conclusion, each solution
to (8), not only cardinal solutions of the typeεk /∈ {λi}, is an eigenvalue of the per-
turbed system. The set of all solutions to (8) contains all cardinal eigenvalues, and in
addition it may contain some singular eigenvalues. The corresponding eigenstates are
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given by (10). All the remaining singular eigenstates are the same as the corresponding
unperturbed eigenstates.

The point of the above discussion is that the application of theorem 2 is nontrivial
only for these singular solutions for whichλj is active. Ifλj is passive andη-degenerate,
εk = λj is at leastη-degenerate eigenvalue of the perturbed system. There are always
η perturbed vibrations that coincide withη unperturbed vibrations
jκ . If there are any
remaining vibrations, these vibrations are all of the form (10), i.e., they can be obtained
by applying theorem 1. Thus, theorem 2 should be explicitly utilised only in order to
obtain genuine singular solutions, that is, in the case whenλj is active.

According to the above analysis, passive eigenvaluesλj and the corresponding
eigenstates
jκ are not affected by the isotopic substitution. Another point to emphasise
is that passive eigenvalues and eigenstates do not enter any of the relations (8)–(11).
Hence, perturbed cardinal solutions do not depend in any way on the unperturbed passive
solutions.

The above two theorems, in conjuncture with lemmas 1 and 2 give a complete
solution to the vibrational isotope effect in the harmonic approximation. In order to
obtain perturbed frequencies and vibrations by this method, no information about force
constants is required. According to relations (8), (9), (13) and (14) perturbed frequen-
cies depend only on the unperturbed frequenciesνi = √λi/2π , on the isotope mass
changes%mτ at atomsτ that are substituted by an isotope, and on the unperturbed
amplitudes〈τs|
i〉 at those atoms. No knowledge of the amplitudes〈αs|
i〉 of the vi-
brations
i at atomsα that are not substituted by an isotope is required. This shows that
perturbed frequencies do not depend on any fine details of a molecule outside the region
affected by the isotopic substitutions. In particular, those frequencies do not depend in
any direct way on atomic masses and force constants outside this region. All the po-
tentially huge information about the molecular structure outside this region is succinctly
concentrated into the global information about unperturbed frequencies.

The same is true for the perturbed vibrations. According to relations (10) and (15)
each perturbed vibration�k is expressed as a linear combination�k = ∑

i ai |
i〉 of
unperturbed vibrations
i. Expansion coefficientsai depend only on the unperturbed
frequenciesνi, on the isotope mass changes%mτ , and on the unperturbed amplitudes
〈τs|
i〉 at atomsτ that are affected by the isotopic substitution. In this sense perturbed
vibrations�k depend exactly on the same quantities as perturbed frequenciesωk. In
particular, if one knows matrix elements〈
i |O|
j 〉 of some observableO between un-
perturbed vibrations
i , using these relations one obtains matrix elements〈�k|O|�l〉 of
this observable between any two perturbed vibrations�k and�l. For example, from the
known transition probability amplitudes between unperturbed vibrations one obtains in
this way transition probability amplitudes between perturbed vibrations, etc. However,
if the amplitudes of the perturbed vibrations are required, the above relations produce
only amplitudes〈τs|�k〉 at the positions of atomsτ that are substituted by an isotope.
Namely, if�k =∑

i ai |
i〉 then〈τs|�k〉 =∑
i ai〈τs|
i〉, and since coefficientsai and

unperturbed amplitudes〈τs|�k〉 are known, perturbed amplitude〈τs|�k〉 is also known.
If perturbed amplitude〈αs|�k〉 at some atomα that is not affected by the isotopic sub-
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stitution is required, one has to know (in addition to the above unperturbed quantities)
unperturbed amplitudes〈αs|
i〉 at the position of this atom.

3. Orthonormalization of unperturbed vibrations and nonproper vibrations

Consider now the question of the orthonormality of the unperturbed vibrations. Re-
lations given in the above two theorems are valid provided the unperturbed vibrations
i

are orthonormalized according to (3). If two unperturbed vibrations have different fre-
quencies, they are automatically orthogonal to each other, and one has only to normalise
these vibrations, which is trivial. The problem is more complex if some unperturbed
vibrations are degenerate, since degenerate vibrations are not automatically orthogonal
to each other, and one has to choose such a linear combination of degenerate vibra-
tions, which satisfy orthogonality relation (3). In general, we do not know in advance
which vibrations will be degenerate, and this depends on a particular problem. How-
ever, there are always six (in the case of nonlinear molecules) or five (in the case of
linear molecules) nonproper vibrations which are degenerate and which correspond to
the frequencyν0 = 0. These nonproper vibrations correspond to three translations and
three (two) rotations, and since they are always present, they can be treated explicitly.

Denote the three nonproper vibrations which correspond to translation in thex-,
y- and z-direction with
Tx, 
Ty and
Tz, respectively. Similarly, denote the three
nonproper vibrations which correspond to rotations aroundx-, y- andz-axis with
Rx ,

Ry and
Rz, respectively. One can show that normalised nonproper vibrations
T s and

Rs are (see appendix):

|
Tx〉 = 1√
M

n∑
α

|αx〉,

|
Ty〉 = 1√
M

n∑
α

|αy〉, (19a)

|
Tz〉 = 1√
M

n∑
α

|αz〉,

|
Rx〉 = 1√
Ix

n∑
α

[
yα|αz〉 − zα|αy〉

]
,

|
Ry〉 = 1√
Iy

n∑
α

[
zα|αx〉 − xα|αz〉

]
, (19b)

|
Rz〉 = 1√
Iz

n∑
α

[
xα|αy〉 − yα|αx〉

]
,

whereM = ∑
α mα is a total molecular mass,Ix, Iy andIz are molecular moments of

inertia, andxα, yα andzα arex-, y- andz-coordinates of atomα, respectively.
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The problem of mutual orthogonality of the nonproper vibrations (19) is addressed
by the following lemma proven in the appendix:

Lemma 3. Let the coordinate system be chosen in such a way that the coordinate origin
is situated in the centre of mass of the unperturbed molecule, and that coordinate axis
coincide with the principal axis of this molecule. Then the nonproper vibrations (19)
satisfy orthonormality relations (3).

In what follows we will assume that besides translations and rotations there are
no other nonproper vibrations. In other words, there are no such modes as free rotation
around some molecular axis, etc. If this is not the case, one has to orthogonalize all such
nonproper vibrations explicitly with nonproper vibrations (19).

Since all proper vibrations
i have nonzero frequency, they are automatically or-
thogonal to nonproper vibrations (19):

〈
T x|M|
i〉 = 〈
Ty |M|
i〉 = 〈
T z|M|
i〉 = 0,
〈
Rx |M|
i〉 = 〈
Ry |M|
i〉 = 〈
Rz|M|
i〉 = 0.

(20)

These relations express the requirement that during molecular vibration the cen-
tre of mass is not displaced, and that no vibration contains any component of angular
momentum. For example, one has explicitly

〈
T x|M|
i〉 =
n∑
α

mα〈αx|
i〉 = 0

and

〈
Rz|M|
i〉 =
n∑
α

mα

[
xα〈αy|
i〉 − yα〈αx|
i〉

] = 0.

The first expression tells thatx-component of the molecular centre of mass is not
displaced during molecular vibration
i, and the second expression tells that during this
vibration there is no rotation aroundz-axis.

Using (19) the expression (10) for the perturbed vibration can be written as

|�k〉 = 1

εk

[ 3∑
s

Ts|
T s〉 +
3∑
s

Rs|
Rs〉
]
+

3n−6∑
i

∑ρ
τ

∑3
s 〈
i |τs〉Cτs

εk − λi |
i〉, (21a)

where coefficientsTs andRs are

Ts = 1√
M

ρ∑
τ

Cτs,

Rx = 1√
Ix

ρ∑
τ

[yτCτz − zτCτy],
(21b)

and analogously for the coefficientsRy andRz.
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In a similar way, one eliminates nonproper vibrations from the expression (9a):

�µx,τx(ε)= 1

ε

[
1

M
+ yµyτ

Iz
+ zµzτ

Iy

]
+

3n−6∑
i

〈µx|
i〉〈
i |τx〉
ε − λi , (22a)

�µx,τy(ε)=−xτyµ
εIz
+

3n−6∑
i

〈µx|
i〉〈
i |τy〉
ε − λi . (22b)

Remaining matrix elements�µy,τy = �∗τy,µy, �µz,τz = �∗τz,µz, �µy,τz = �∗τz,µy
and�µz,τx = �∗τx,µz are obtained by a cyclic substitution in (22a) and (22b).

In the case of nonlinear molecules the summation overi in relations (21) and (22) is
performed over(3n−6) proper vibrations, while the contribution of nonproper vibrations
is taken into account by the first terms in those relations. In the case of linear molecules,
each term containing moment of inertiaIx = 0 along the molecular axis should be
omitted, and summation is performed over(3n− 5) proper vibrations.

Similar explicit relations are obtained in the case of singular solutions, which we
omit here for the sake of simplicity.

4. Orthonormalization of perturbed vibrations

In analogy to (3), perturbed vibrations can be orthonormalized according to

〈�k|M+%M|�l〉 = δkl. (23)

Vibrations belonging to different frequencies are automatically orthogonal to each
other. In particular, each proper vibration�k is orthogonal to perturbed nonproper vi-
brations|�T s〉 and|�Rs〉:

〈�T s|M+%M|�k〉 = 0, 〈�Rs|M+%M|�k〉 = 0, s = 1,2,3. (23a)

Relations (23a) follow from the general form of relations (6). However, it is in-
structive to give an independent derivation of those relations. This provides an indepen-
dent verification of the validity of the LRP approach.

Perturbed molecule has in general different centre of mass and different principal
axes from the unperturbed molecule. Hence, perturbed nonproper vibrations|�T s〉 and
|�Rs〉 usually differ from unperturbed nonproper vibrations|
T s〉 and|
Rs〉. However,
since the perturbed and the unperturbed molecule have the same geometry, each transla-
tion and each rotation of the perturbed molecule is a linear combination of translations
and rotations of the unperturbed molecule. Conditions (23a) are, hence, equivalent to
the conditions

〈
T s |M+%M|�k〉 = 0, 〈
Rs |M+%M|�k〉 = 0, s = 1,2,3. (23b)
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Assume that perturbed vibration�k is cardinal, and consider the first relation
in (23b). Inserting expression (10) for the cardinal vibration�k into this relation one
finds

〈
T s |M+%M|�k〉

=
3n∑
i

∑ρ
τ

∑3
p 〈
i |τp〉Cτp

εk − λi 〈
T s|M|
i〉 +
3n∑
i

∑ρ
τ

∑3
p 〈
i |τp〉Cτp

εk − λi 〈
T s|%M|
i〉.

(24)

Due to (3), all terms in the first sum of (24) vanish, except for the term involving
i =

T s. Further, from (19a) and (7)

〈
T s|%M|
i〉 = 1√
M

ρ∑
τ

%mτ 〈τs|
i〉.

Hence, the right-hand side of (24) equals

1

εk

ρ∑
τ

3∑
p

〈
T s|τp〉Cτp + 1√
M

ρ∑
µ

[
ρ∑
τ

3∑
p

�µs,τp(εk)Cτp

]
%mµ.

However, according to (11) the quantity in the brackets equals[�(εk)C]µs = −Cµs/

εk%mµ, while (19a) implies〈
T s|τp〉 = δsp/
√
M . One thus finally obtains〈
T s |M+

%M|�〉 = 0. This shows that each perturbed vibration (10) is orthogonal to the unper-
turbed translation
T s .

Consider now unperturbed rotations
Rs, for example, a rotation
Rx . From (19b)
and (7) one obtains

〈
Rx |%M|
i〉 = 1√
Ix

ρ∑
τ

%mτ

[
yτ 〈τz|
i〉 − zτ 〈τy|
i〉

]
.

Hence, one finds that the expression〈
Rx|M+%M|�k〉 equals

1

εk

ρ∑
τ

3∑
p

〈
Rx |τp〉Cτp

+ 1√
Ix

ρ∑
µ

[
yµ

ρ∑
τ

3∑
p

�µz,τp(εk)Cτp − zµ
ρ∑
τ

3∑
p

�µy,τp(εk)Cτp

]
%mµ.

According to (11) the quantity in the brackets equals(zµCµy − yµCµz)/εk%mµ, while
according to (19b) one has〈
Rx |τp〉 = (yτ δzp − zτδyp)/√Ix. Inserting into the above
expression one obtains〈
Rx |M+%M|�〉 = 0.

Since perturbed translations and rotations are linear combinations of unperturbed
translations and rotations, this proves (23a) in the case when�k is a cardinal vibra-
tion (10). Analogous results are obtained for singular vibrations (15).
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Perturbed vibrations (10) and (15) are not orthonormalized, and hence, these vi-
brations in general do not satisfy (23). However, if the orthonormalization is required,
it can be easily done. If the perturbed vibration�k is nondegenerate, it is automatically
orthogonal to all other perturbed vibrations, and hence, one has only to normalize this
vibration. The problem of mutual orthogonality of the perturbed vibrations can appear
only for degenerate vibrations.

If �k and�l are two (not necessarily distinct) perturbed vibrations, they can be
written as linear combinations�k = ∑

i ci
i and�l = ∑
i di
i , where coefficientsci

anddi are determined by relations (10) and/or (15). Hence,

〈�k|M+%M|�l〉 =
3n∑
i

c∗i di +
3n∑
i,j

c∗i dj 〈
i |%M|
j 〉. (25a)

Thus, the orthonormalization of perturbed vibrations requires calculation of matrix
elements〈
i |%M|
j 〉. Using (7) those matrix elements can be expressed in terms of
amplitudes〈µs|
i〉:

〈
i |%M|
j 〉 =
ρ∑
µ

%mµ

3∑
s

〈
i |µs〉〈µs|
j 〉. (25b)

This shows that in order to orthonormalize perturbed vibrations, only the ampli-
tudes〈µs|
i〉 of the unperturbed vibrations
i at atomic sitesµ that are affected by the
isotopic substitutions are required. No knowledge of the amplitudes of the unperturbed
vibrations
i at the remaining part of a molecule is needed.

In conclusion, one can normalize perturbed vibrations, which usually extend over
entire molecule, without any detailed knowledge about the molecular structure (force
constants, atomic masses, atomic positions etc.) outside the region affected by the iso-
topic substitutions.

5. Single isotope substitution

Consider two moleculesA andBτ which are identical except for a single isotopic
substitution at atomic siteτ . In this case perturbation (7) reduces to

%M = %mτ

3∑
s

|τs〉〈τs|.

Here%mτ is the isotope mass change of the atomτ , while |τs〉 is a unit displacement of
this atom in thesth coordinate direction.

Applying theorem 1 to this case, one finds thatεk /∈ {λi} is an eigenvalue of the
perturbed isotope equation if and only if it is a root of the functionf (ε)

f (ε) ≡
∣∣∣∣�(ε)+ I3

ε%mτ

∣∣∣∣ = 0, (26)
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where�(ε) is a 3× 3 matrix with matrix elements

�sp(ε) =
3n∑
i

〈τs|
i〉〈
i |τp〉
ε − λi (27)

and whereI3 is a unit 3× 3 matrix.
If one eliminates nonproper vibrations according to (22), matrix elements of a ma-

trix � can be written in a more explicit form

�xx(ε)= 1

ε

[
1

M
+ y2

τ

Iz
+ z2

τ

Iy

]
+

3n−6∑
i

〈τx|
i〉〈
i |τx〉
ε − λi , (28a)

�xy(ε)=�∗yx(ε) = −
xτyτ

εIz
+

3n−6∑
i

〈τx|
i〉〈
i |τy〉
ε − λi . (28b)

Cyclically one obtains remaining matrix elements�yy(ε), �zz(ε), �xz(ε) =
�∗zx(ε) and�yz(ε) = �∗zy(ε).

Further, ifεk /∈ {λi} is a perturbed eigenvalue, each state of the form

|�k〉 =
∑
j

∑
s 〈
j |τs〉Cs

εk − λj |
j 〉, (29)

where coefficientsCs are components of a column vectorC which is the (nontrivial)
solution of [

�(εk)+ I3

εk%mτ

]
C = 0, (30)

is a perturbed vibration corresponding to this eigenvalue. In addition, coefficientsCs

satisfy

Cs = −εk%mτ 〈τs|�k〉. (31)

Perturbed vibration (29) can be written in a more explicit form

|�k〉 = 1

εk

[ 3∑
s

Ts |
T s〉 +
3∑
s

Rs|
Rs〉
]
+

∑
j

∑3
s 〈
j |τs〉Cs

εk − λj |
j 〉, (32a)

where

Ts = Cs√
M
, R1 ≡ Rx = yτCz − zτCy√

Ix
, (32b)

and cyclically for coefficientsR2 andR3. Each perturbed proper vibration�k is, thus, a
linear combination of unperturbed nonproper vibrations (translations and rotations)
T s

and
Rs and unperturbed proper vibrations
i. Translations and rotations
T s and
Rs

compensate for the recoil introduced by the isotope mass change%mτ .
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The above relations are valid for cardinal solutions, and they apply directly to non-
linear molecules. In the case of linear molecules, each term containing moment of in-
ertia Ix = 0 should be omitted, and the summation is performed over(3n − 5) proper
vibrations.

Similar relations are obtained for singular solutions.

6. Conclusions

The above two theorems, in conjuncture with lemmas 1–3 and explicit relations
(21) and (22), give a complete solution to the vibrational isotope effect in the harmonic
approximation. The obtained relations produce all perturbed frequencies and all the
corresponding vibrations.

In order to obtain perturbed frequencies and vibrations, no information about force
constants is required. These perturbed quantities depend only on the unperturbed fre-
quenciesνi = √λi/2π , on the changes%mτ of the masses of atomsτ that are substi-
tuted by an isotope, and on the amplitudes〈τs|
i〉 of the unperturbed vibrations
i at
the positions of these atoms. No information on the amplitudes〈αs|
i〉 of the vibra-
tions
i at atomsα that are not substituted by an isotope is required. This applies in
particular to the normalization of the perturbed vibrations. In conclusion, perturbed fre-
quencies and vibrations do not depend on the unperturbed amplitudes at any atom which
is not replaced by an isotope. This is a remarkable result. Conceptually it shows that
the perturbed frequencies and vibrations do not depend on any fine details of molecular
structure outside the region affected by the perturbation. All information due to the mole-
cular region unaffected by the perturbation%M is condensed in the global information
about unperturbed frequenciesνi = √λi/2π . In addition, the information about the un-
perturbed amplitudes〈τs|
T s〉 and〈τs|
Rs〉 of the nonproper vibrations
T s and
Rs

can be replaced by the information about the coordinate positions(xτ , yτ , zτ ) of those
atoms that are substituted by an isotope, and by four global characteristics: total molec-
ular massM of the unperturbed molecule, and three principal moments of inertiaIx, Iy
andIz of this molecule.

Though the obtained LRP relations express each perturbed vibration|�k〉 as a lin-
ear combination of unperturbed vibrations
i , those relations do not explicitly specify
amplitudes〈αs|�k〉 of the perturbed vibrations|�k〉 at those atoms that are not substi-
tuted by an isotope. However, if one knows matrix elements〈
i |O|
j 〉 of an observ-
able O between the unperturbed vibrations|
i〉, then those relations produce matrix
elements〈�k|O|�l〉 of this observable between any two perturbed vibrations. This is
usually all what is required, and in this sense the obtained LRP relations provide a suffi-
ciently complete specification of all perturbed vibrations.

In general, it is not important how frequenciesνi and unperturbed amplitudes
〈τs|
i〉 were obtained. These quantities can be obtained by solving the unperturbed
eigenvalue equation (2) with some assumed force field, in a standard way. However,
these quantities can be also obtained in many other ways. For example, one can use
experimental data for the unperturbed frequencies. Concerning unperturbed amplitudes,
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in some cases these amplitudes can be obtained from the molecular symmetry alone [4].
In the case of linear and out-of-plane vibrations of planar molecules these amplitudes
can be obtained from the experimental frequencies of selected monosubstituted iso-
topomers [5], etc. In this later case the entire information about the unperturbed system
is completely reduced to the experimental data: frequencies of the unperturbed molecule,
and frequencies of few selected monosubstituted molecules.

An additional point to emphasise is that the information required to solve the per-
turbed problem by the LRP method is relatively small. In order to find all perturbed fre-
quencies and vibrations one has to know(3n−6) unperturbed vibrationsνi, 3ρ(3n−6)
unperturbed amplitudes〈µs|
i〉, ρ mass differences%mτ , the total molecular massM,
and the three moments of inertia along principal axis. This totals to approximately 9ρn

quantities. Ifρ � n, which is usually the case, this is substantially less than approx-
imately 9n2/2 force constants. Thus, the LRP approach requires much less data, than
the standard approach with force constants. Of course, in a standard approach one can
use various models which utilise reduced number of force constants [1]. Those models
are based on some plausible assumptions, such as the assumption of central forces, the
assumption of valence forces, and alike [1]. However, due to neglect of some force con-
stants, all such models are only approximate, while the suggested LRP approach is in
the harmonic approximation exact.

Finally and not the least important, one finds that the operation count for the solu-
tion of the LRP equations is of the order O(n2), while operation count for the solution
of the perturbed equation (6) in a standard way is usually of the order O(n3) [2,3]. Thus,
in the case of large molecules (bign), LRP approach is numerically much faster than the
standard approach.

Appendix

A.1. Proof of theorems 1 and 2

One can show that theorems 1 and 2 are a special case of much more general low
rank perturbation (LRP) theorems [2,3]. However, we prefer to give here an independent
derivation of these theorems. This is less time consuming than to cite general LRP theo-
rems, and in addition, it has the advantage of illustrating the spirit of the LRP approach.

Multiplying relation (6) from left by〈
i | and using (2) one obtains

(εk − λi)〈
i|M|�k〉 = −εk〈
i |%M|�k〉. (A.1)

Also from relation (3) one finds

I =
3n∑
i

|
i〉〈
i |M, (A.2)

whereI is a unit operator.
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Relation (A.1) is our starting relation for the derivation of theorems 1 and 2. Con-
sider, first, theorem 1.

Let εk /∈ {λi}. Dividing both sides of (A.1) by(εk − λi), multiplying from left
by |
i〉, summing overi and using (A.2) one obtains

|�k〉 = −εk
∑
i

〈
i |%M|�k〉
εk − λi |
i〉.

Using (7) this can be written as relation (10) where coefficientsCτp are given by (12).
Multiplying (10) from left by−εk%mµ〈µs| and using (12) one obtains

Cµs = −εk%mµ

ρ∑
τ

3∑
p

�µs,τp(εk)Cτp, µ = 1, . . . , ρ, s = 1,2,3,

where�µs,τp(ε) is given by (9a). Dividing both sides of this relation byεk%mµ one
obtains (11). This is a linear set of 3ρ relations in 3ρ unknownsCτp, and it has a
nontrivial solution if and only if determinant of a system (11) vanishes. Thus, one obtains
condition (8). This proves that each eigenvalueεk /∈ {λi} of relation (6) satisfies (8) and
also that the corresponding eigenstate is (10) where coefficientsCτp satisfy (11). In
addition, those coefficients are given by (12). Tracing the above derivation backwards
one finds that the inverse is also true. Thus, each rootεk /∈ {λi} of (8) is an eigenvalue of
relation (6). Also, each state (10) where coefficientsCτp satisfy (11) is the corresponding
eigenstate of (6). This proves theorem 1.

One proves theorem 2 along the same lines as theorem 1.
Let λj be aη-degenerate unperturbed eigenvalue, and let|
jκ〉 be the correspond-

ing eigenstates. Assume thatεk = λj is an eigenvalue of the perturbed equation (6). We
again obtain relation (A.1). However, this time one can divide both sides of this relation
with (εk − λi) where there is a conditionλi �= εk. Multiplying the obtained relation
from left by |
i〉 and summing overi (λi �= εk), one has to add to both sides of thus
obtained relation quantity

∑
κ |
jκ〉〈
jκ |M|�k〉. Now one can use relation (A.2) which

gives (15) where coefficientsCτs andDκ are given by (17). In order to obtain relations
(13) and (16) one now multiplies (15) from left by−εk%mµ〈µs| and also by〈
jκ |M.
Remaining part is similar to the proof of theorem 1.

A.2. Proof of lemma 1

Let the equation (11) haveη linearly independent solutionsCr (r = 1,2,3, . . . , η).
Each of these solutions generates according to (10) an eigenstate|�r

k 〉 of the perturbed
eigenvalue equation. All these eigenstates correspond to the same eigenvalueεk. As-
sume that these eigenstates are linearly dependent. Then there exists a nontrivial linear
combination of these eigenstates that equals zero:

η∑
r

cr
∣∣�r

k

〉 = 3n∑
i

∑ρ
τ

∑3
p 〈
i |τp〉∑η

r crC
r
τp

εk − λi |
i〉 = 0.
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Since |
i〉 are linearly independent, this implies
∑

τ

∑
p 〈
i|τp〉∑r crC

r
τp = 0 for

eachi. Since|
i〉 form a complete set, this implies
∑

τ

∑
p |τp〉

∑
r crC

r
τp = 0. How-

ever, vectors|τp〉 are linearly independent, and hence,
∑

r crC
r
τp = 0 for eachτ andp.

This last relation implies that vectorsCr are linearly dependent, contrary to the assump-
tion. This proves that vectors|�r

k〉must be linearly independent, and hence, degeneracy
of each cardinal eigenvalueεk equals the number of linearly independent solutions to the
matrix equation (11). However, the number of linearly independent solutions to the ma-
trix equationAx = 0 whereA is a square matrix is by definition nullity of this matrix [6].
On the other hand, the rank of a matrix is defined as a number of linearly independent
columns, and in the case of a square matrix this equals the number of linearly indepen-
dent rows [6]. This proves lemma 1, i.e., that the degeneracy ofεk equals nullity of a
matrix�(εk)+%M−1/εk. In a similar way one proves lemma 2.

A.3. Derivation of relations (19) for nonproper vibrations

Let
Tx be a translation in thex-direction. This translation is a linear combination
of unit displacements|αx〉

|
Tx〉 = Q

n∑
α

|αx〉,

where the constantQ is determined by the normalisation condition (3). Using orthonor-
mality relations〈αr|βt〉 = δαβδrt one finds

〈
T x|M|
Tx〉 =
n∑
α

3∑
r

mα〈
Tx |αr〉〈αr|
Tx〉

=
n∑
α

mα〈
T x|αx〉〈αx|
Tx〉 = Q2M = 1

and similarly for translations iny- andz-direction. Hence, follow the relations (19a).
Let now
Rz describe rotation for some small angleφ around thez-axis. Dis-

placements in thex- andy-direction of atomα are proportional to−yα|xα〉 andxα|yα〉,
respectively. The state
Rz is, hence, a linear combination

|
Rz〉 = Q

n∑
α

[
xα|yα〉 − yα|xα〉

]
.

ConstantQ is again determined by the normalisation condition (3):

〈
Rz|M|
Rz〉 =
n∑
α

〈
Rz|xα〉mα〈xα |
Rz〉 +
n∑
α

〈
Rz|yα〉mα〈yα |
Rz〉

=Q2
n∑
α

(
x2
α + y2

α

)
mα = Q2Iz = 1,
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whereIz is moment of inertia aroundz-axis. Analogous relations are obtained for rota-
tions
Rx and
Ry . Hence, follow the relations (19b).

A.4. Proof of lemma 3

According to the above derivation of nonproper vibrations, all these vibrations are
normalized. It remains to be shown that these vibrations are also orthogonal to each
other, provided the coordinate origin is situated in the molecular centre of mass, and
provided the coordinate axes coincide with the principal axes of the unperturbed mole-
cule.

One easily shows that translations (19a) are mutually orthogonal. For example,

〈
T x |M|
Ty〉 = 1

M

∑
αα′
〈αx|mα|α′y〉 = 0.

Concerning the orthogonality of rotations (19b) to translations (19a) one finds, e.g.,

〈
T x |M|
Ry〉 = − 1√
MIy

∑
α

mαzα

and similarly for other possible combinations. If the coordinate origin is situated in the
centre of molecular mass, right-hand side of this expression is zero. This shows that the
rotations (19b) are orthogonal to the translations (19a), provided the coordinate origin is
situated in the molecular centre of mass.

It remains to be shown that rotational states (19b) are orthogonal to each other.
Consider, for example, rotations
Rx and
Ry . One finds

〈
Rx |M|
Ry〉 = − 1√
IxIy

∑
α

mαyαxα. (A.3)

Assume that coordinate axes coincide with the principal axes of a molecule. In
this case one coordinate axis has the greatest possible moment of inertia, another has
the smallest possible moment of inertia, while the third axis has an intermediate value
for the moment of inertia [7]. Let moments of inertia having an extreme value be
Ix = ∑

α (y
2
α + z2

α)mα and Iy = ∑
α (x

2
α + z2

α)mα. Since these moments of inertia
assume extreme values, they must be stationary with respect to an infinitesimal rotation
of coordinate axes, i.e.,δIx = δIy = 0. Consider an infinitesimal rotationφ around
z-axis. New coordinates are

z′ = z, x′ = x + φy, y′ = −φx + y,
whereφ is infinitesimal. Hence,

δIx =
∑
α

(
y′2α + z′2α

)
mα −

∑
α

(
y2
α + z2

α

)
mα = −2φ

∑
α

xαyαmα = 0.
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In a similar way infinitesimal rotations aroundx- andy-axis imply∑
α

yαzαmα =
∑
α

zαxαmα = 0.

Hence and from (A.3),〈
Rx |M|
Ry〉 = 0, and similarly for other rotations. This
proves that, provided the coordinate axes coincide with the principal axes, rotations (19b)
are mutually orthogonal.

Note that both conditions are necessary in order for improper vibrations (19) to be
orthonormalized. It is obvious from the above derivation that if the coordinate system is
not in the molecular centre of mass, there is at least one rotation, which is not orthogonal
to all translations. Similarly, if the coordinate axes do not coincide with the principal
axes, at least one pair of rotations is not mutually orthogonal.
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