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Mathematical formalism of the low rank perturbation method (LRP) is applied to the vibra-
tional isotope effect in the harmonic approximation. A pair of twatom isotopic molecules
A and B which are identical except for isotopic substitutiongatomic sites is considered.
Relations which express vibrational frequencigsand normal mode¥;, of the perturbed
isotopic moleculeB in terms of the vibrational frequencies and normal mode®; of the
unperturbed moleculd are derived. In these relations complete specification of the unper-
turbed normal mode®; is not required. Only amplitudeg|®;) of normal modesd; at
sitest affected by the isotopic substitution are needed.
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1. Introduction

The aim of this and the following paper is to provide a simple method for the calcu-
lation of the vibrational isotope effect in the harmonic approximation [1]. In this approx-
imation one uses the classical model of the molecule where the nuclei are represented
by mathematical points with masses. The displacement of nuclei from equilibrium posi-
tions can be described by Cartesian coordinates. If the molecule contairttei, there
are 3: such generic coordinates:

1,62, ..., &3,.

One can express the potential and the kinetic energy in terms of these coordinates.
In the harmonic approximation [1] the potential energy is

V=Y fi&& (1a)

i<j

wheref;; = (32V /3&;0& ;)0 are force constants expressed in Cartesian coordinates.
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Kinetic energy expressed in terms of Cartesian displacements from equilibria is
3n

1 dg; \?
T:EZmi(a> . (1b)

The solution of the above sistem consistingnomasses connected by harmonic
forces leads to the generalised eigenvalue equation

FI®;) = A,M|D;), (2

whereF is a 3: x 3n force field matrix with matrix elementg;, whileM isa 3: x 3n di-
agonal matrix which on a diagonal contains masse<£igenvalues.; of the eigenvalue
equation (2) are related to the vibrational frequencjdsy

A = 4r?vZ, )
Without loss of generality one can assume eigenstdigsto be orthonormalized
according to
(i IM[D;) =3, ;- )

Instead of generic indicesand j we will use Greek letters and g in order to
label different atoms, and indicesand p in order to denote:-, y- andz-coordinates.
Using this convention operatoFsandM can be written in the form

n 3 n 3
F=Y"Y fuplas)Bpl, M=) my ) las)as, 4)

aff sp

where|as) is a ket vector, which denotes a unit displacement atom in thesth co-
ordinate direction. These unit displacements are orthonormalized according to

(as|,3P> = 5a/35sp (53.)
and they are complete:
Z las){as| = 1. (5b)

We will also use explicit notation
lax) = |al), lay) = |a2), laz) = |a3)

in order to denote unit displacementsooftom inx-, y- andz-direction, respectively.

If in the original molecule some atoms are replaced by an isotope, to a very high
degree of accuracy force field is not affected by those replacements [1]. In this approxi-
mation the perturbed equation describing isotopicaly substituted molecule is

FIWe) = &M + AM)| W), (6)
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where AM represents perturbation. We will label atoms that are affected by isotope
substitution with Greek letterg andz. If there arep such atoms, perturbationM can
be written in the form

P 3
AM =) Amy Y |ps)usl, (7)
2 N

whereAm,, is isotope mass change of atem Perturbed frequencies, are related to
the perturbed eigenvalueg by

e = 4mlw?. (6)

Eigenstate$d;) and|¥,) have physical meaning of vibrations, and, therefore, we
will use interchangeably both terms. When emphasis is on mathematics we will use term
eigenstatesand when emphasis is on physics we will use teionations

2. Multipleisotopic substitutions

One can solve perturbed eigenvalue equation (6) using the low rank perturbation
(LRP) approach [2,3]. In this approach one expresses the eigenvalues and the eigenstates
of the generalised perturbed eigenvalue equation in terms of the eigenvalues and eigen-
states of the generalised unperturbed eigenvalue equation. One also makes a distinction
betweercardinal andsingulareigenvalues and eigenstates of the perturbed equation. By
definition, an eigenvalue, of the perturbed equation is “cardinal” if it differs from all
the eigenvalueg,; of the unperturbed equation. Otherwise it is singular [2,3]. In other
words, ¢, is cardinal ife; ¢ {A;} and singular ife, € {A;}.

Concerning cardinal eigenvalues and eigenstates in appendix we prove the follow-
ing theorem:

Theorem 1 (Cardinal eigenvalues and vibrations). Let (2) be the unperturbed isotope
eigenvalue equation wherg = /4;/2r% are the unperturbed frequencies. Let further
the unperturbed vibrations be orthonormalized according to (3). Then:

(@) e ¢ {A;}is an eigenvalue of the perturbed isotope eigenvalue equation (6) if and
only if it is a root of the equation

-1

A
fle)= ‘9(8) + =0, (8)

wheref is a 3 x 3p Hermitian matrix with matrix elements

_ 32 (1151®;) (D, ]7p)

) Mvtzlv"'7pv s7p2172737
8—)”‘

Szus,tp(g) = Sztp,;m( )

i

(9a)
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while AM~1is 3p x 3p diagonal matrix with matrix elements

8,208,
AMTE = HTEP (9b)

Us,Tp Amt .
(b) Lete, ¢ {A;} be the perturbed eigenvalue. Each vibratipncorresponding to this
eigenvalue is of the form

3n P 3
053 (@]2p)C,
ey = 3 Zr L (TPIC,

g — A

CDi>’ (10)

where the coefficients’;, are the components of @olumn vectorC which is the
(nontrivial) solution of the matrix equation

AM™1
[ﬂ(ek) + ]C =0. (11)
Ex
In addition, coefficient,, satisfy
Cop=—sAm (tp|¥y), v=1...,p, p=123 (12)

Conversely, ife, ¢ {A;} is the perturbed eigenvalue, each stteof the form (10),
where the coefficient€’;, are the (nontrivial) solution of the linear set (11), is the
corresponding vibration. Moreover, these coefficients satisfy (12).

Concerning degeneracy of the eigenvadyet {A;} one finds (see appendix):

Lemmal. Letg, ¢ {);} be a cardinal eigenvalue of the perturbed isotope equation (6).
The degeneracy of this eigenvalue equals nullity of the ma&rig) + AM /¢

In other words, degeneracy gf ¢ {);} equals the number of linearly independent
solutionsC to the matrix equation (11).

The above theorem gives a complete solution concerning cakgigal);} eigen-
values and vibrations of the perturbed isotope equation (6). Given the unperturbed fre-
quenciesy; = +/A;/27 and unperturbed amplitudgsp|®;), one obtains perturbed
frequenciesy, = ,/er/2m and perturbed vibrationg,. First, one has to find the root
or roots of the @ x 3p determinant|R(s) + AM~1/¢|. Each roots; ¢ {A;} of this
determinant is an eigenvalue of (6). Once a particular eigenvalug {A;} is found,
and if the corresponding vibrations are required, one has to solve the homogenous set of
3p linear equations (11) ing@unknownsC,,. Linearly independent solutior to this
equation generate linearly independent perturbed vibratigndn particular, each car-
dinal eigenvalue; ¢ {A;} of the perturbed eigenvalue equation is at mestiggenerate.

This maximum possible degeneracy is achieved if and only if m&ci) + AM~1/g;
is a null matrix.

In a similar way one derives the following theorem, which gives the solution for
the singular frequencies and vibrations.
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Theorem 2 (Singular eigenvalues and vibrations). Assume the same conditions as in
theorem 1. Let; be an-degenerate unperturbed eigenvalue, and denote the corre-
sponding vibrations witl®;, (« =1,...,7n). Then:

(a) ex = A; is an eigenvalue of the perturbed eigenvalue equation (6) if and ohly if

(b)

satisfies

Q°0.) + AM~h; W/a;|

0 _
) = ‘ WT/A, 0, (0} (13)

whereQ0(e) is a 3 x 3p Hermitian matrix with matrix elements

3n

(us|P@;)(®P;[zp)
Z AT TP

Q0 =
(e) p—y

S, TP

, (14a)
iQi#h )
W is a 3o x n matrix with matrix elements

(s P i)

w = —
LS, K
Amy,

, uw=1...,0,5=123 «k=1...,1, (14b)

AM~1is a diagonal matrix with matrix elements (9b), @hds an x n null matrix.

Lete, = A; be the perturbed eigenvalue. Each vibratipncorresponding to this
eigenvalue is of the form

3n P 3 n
Z Z (q>i|TP>Crp
W) = el . D.|®:), 15
W) ~<A§#:) S 1P) ) D) (15)
(A j K

where the coefficient€’,, and D, form a (3p 4+ n) column vector which is the
(nontrivial) solution of the matrix equation

Q0 +AML wya[C
[T ][6] <o s

In addition, these coefficients satisfy
Cop = —exAm(tp|W), Dy = (P IM[Wy),
t=1...,0, p=123 k=1,...,n. an

Conversely, ifg, is a singular eigenvalue of (6), each stdte of the form (15),
where the coefficient§’,;, and D, are the (nontrivial) solution of the linear set (16),
is the corresponding vibration.

Concerning degeneracy of singular eigenvalues one finds in analogy to lemma 1.:

LemmaZ2. Lete, = A; be a singular eigenvalue of the perturbed isotope equation (6).
The degeneracy of this eigenvalue equals the number of linearly independent solutions
[C, D] to the matrix equation (16).
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In particular, if the unperturbed eigenvalag is n-degenerate, perturbed eigen-
valuee;, = A; is at most(3p + n)-degenerate. Also, if > 3p, perturbed eigenvalue
e = A is at least(n — 3p)-degenerate.

In order to analyse in more detail singular solutions given by theorem 2, it is con-
venient to distinguistactive and passiveunperturbed eigenvalues [2,3]. The notion of
active and passive eigenvalues is defined relative to the perturlsiin

If the perturbationAM satisfies

AM[®;) =0, «k=1,...,n, (18a)

the eigenvalue. ; is passive otherwise it isactive Thus, the eigenvalug; is passive if
the invariant subspace associated with this eigenvalue is contained in a null subspace of
the operatoAM.

Requirement (18a) is equivalent to

(us|®je) =0, u=21...,p0,s=2123 k=1...,n. (18b)

Physically, if the frequency; = \/Tj/Zn is passive, all the corresponding un-
perturbed vibration® ;. have amplitudes zero at each atom which is substituted by an
isotope. Such a vibration can not be affected by the isotopic substitutions. Hence, if the
unperturbed eigenvalug; is passive, this eigenvalue is also an eigenvalue of the per-
turbed system, and the unperturbed vibratidng are also vibrations of the perturbed
system.

One derives the same conclusion from the above theorem. In general, @&tyix
is singular in the point = ;. However, if the eigenvalug; is passive, matrif2(e) is
regular in this point, and moreover, one firfé) = 2°(¢). In addition, ifA; is passive,
matrix W vanishes, i.eW = 0. Hence, matrix equation (16) reduces to

AM~1

J

[sz(x D+ ]c — 0. (16a)

Since there is no condition on the coefficierfits, these coefficients are arbitrary.
Hence, there are always solutions withC = 0 and with different coefficient®,
nonzero. According to (15), the corresponding perturbed vibrations coincide with unper-
turbed vibrationsb ;.. Thus, if1; is passive, it is a singular eigenvalue of the perturbed
equation, and each unperturbed vibratibp is also perturbed vibration.

In addition to the solutions witlk = 0 which always exist ifs; is passive, rela-
tion (16a) can also have a nontrivial solution. Those additional solutions can be chosen
to satisfyD = 0. Further, relation (16a) is equivalent to the relation (11) wijth= 2 ;.

Also with D = 0 eigenstate (15) reduces to the eigenstate (10). Thus, all such extra
solutions can be obtained from relations (8), (10) and (11). In conclusion, each solution
to (8), not only cardinal solutions of the typg ¢ {);}, is an eigenvalue of the per-
turbed system. The set of all solutions to (8) contains all cardinal eigenvalues, and in
addition it may contain some singular eigenvalues. The corresponding eigenstates are
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given by (10). All the remaining singular eigenstates are the same as the corresponding
unperturbed eigenstates.

The point of the above discussion is that the application of theorem 2 is nontrivial
only for these singular solutions for whigh is active. If2 ; is passive ang-degenerate,

e = X; is at least)-degenerate eigenvalue of the perturbed system. There are always
n perturbed vibrations that coincide withunperturbed vibration® ;.. If there are any
remaining vibrations, these vibrations are all of the form (10), i.e., they can be obtained
by applying theorem 1. Thus, theorem 2 should be explicitly utilised only in order to
obtain genuine singular solutions, that is, in the case whas active.

According to the above analysis, passive eigenvalueand the corresponding
eigenstate® ;, are not affected by the isotopic substitution. Another point to emphasise
is that passive eigenvalues and eigenstates do not enter any of the relations (8)—(11).
Hence, perturbed cardinal solutions do not depend in any way on the unperturbed passive
solutions.

The above two theorems, in conjuncture with lemmas 1 and 2 give a complete
solution to the vibrational isotope effect in the harmonic approximation. In order to
obtain perturbed frequencies and vibrations by this method, no information about force
constants is required. According to relations (8), (9), (13) and (14) perturbed frequen-
cies depend only on the unperturbed frequenejes= +/A;/27, on the isotope mass
changesAm, at atomst that are substituted by an isotope, and on the unperturbed
amplitudes(zs|®;) at those atoms. No knowledge of the amplituges| ;) of the vi-
brations®; at atomsx that are not substituted by an isotope is required. This shows that
perturbed frequencies do not depend on any fine details of a molecule outside the region
affected by the isotopic substitutions. In particular, those frequencies do not depend in
any direct way on atomic masses and force constants outside this region. All the po-
tentially huge information about the molecular structure outside this region is succinctly
concentrated into the global information about unperturbed frequencies.

The same is true for the perturbed vibrations. According to relations (10) and (15)
each perturbed vibratiod, is expressed as a linear combinatidp = ), a;|®;) of
unperturbed vibration®;. Expansion coefficients; depend only on the unperturbed
frequenciesy;, on the isotope mass changas:,, and on the unperturbed amplitudes
(ts|®;) at atomsr that are affected by the isotopic substitution. In this sense perturbed
vibrations ¥, depend exactly on the same quantities as perturbed frequencielh
particular, if one knows matrix element®; |O|® ;) of some observabl® between un-
perturbed vibration®;, using these relations one obtains matrix elemédf$O| ;) of
this observable between any two perturbed vibratdpand¥,. For example, from the
known transition probability amplitudes between unperturbed vibrations one obtains in
this way transition probability amplitudes between perturbed vibrations, etc. However,
if the amplitudes of the perturbed vibrations are required, the above relations produce
only amplitudes(ts|¥,) at the positions of atoms that are substituted by an isotope.
Namely, if &, = ). ;|®;) then(ts| W) = > . a;(ts|P;), and since coefficienis and
unperturbed amplitudes s| ;) are known, perturbed amplitudes| ¥, ) is also known.

If perturbed amplitudéas|¥,) at some atona that is not affected by the isotopic sub-
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stitution is required, one has to know (in addition to the above unperturbed quantities)
unperturbed amplitudeges|®;) at the position of this atom.

3. Orthonormalization of unperturbed vibrations and nonproper vibrations

Consider now the question of the orthonormality of the unperturbed vibrations. Re-
lations given in the above two theorems are valid provided the unperturbed vibrdtions
are orthonormalized according to (3). If two unperturbed vibrations have different fre-
guencies, they are automatically orthogonal to each other, and one has only to normalise
these vibrations, which is trivial. The problem is more complex if some unperturbed
vibrations are degenerate, since degenerate vibrations are not automatically orthogonal
to each other, and one has to choose such a linear combination of degenerate vibra-
tions, which satisfy orthogonality relation (3). In general, we do not know in advance
which vibrations will be degenerate, and this depends on a particular problem. How-
ever, there are always six (in the case of nonlinear molecules) or five (in the case of
linear molecules) nonproper vibrations which are degenerate and which correspond to
the frequencywy = 0. These nonproper vibrations correspond to three translations and
three (two) rotations, and since they are always present, they can be treated explicitly.
Denote the three nonproper vibrations which correspond to translation it the
y- and z-direction with &7, ®7, and &, respectively. Similarly, denote the three
nonproper vibrations which correspond to rotations aratd- andz-axis with @,
dp, anddy,, respectively. One can show that normalised nonproper vibraignsind
Dy, are (see appendix):

)= iM Z lcx),
|®7y) = Z ), (192)

|®7,) = Z laz),

(®re) = —= Z[ya|az> — zolay)],

|q)Ry> Zolax) xa|az)], (19b)

fz
|Dg,) = ﬁ Xaj[xuaw — Yalax)],

whereM = ) m, is a total molecular masg,, I, andI, are molecular moments of
inertia, andx,, y, andz, arex-, y- andz-coordinates of atorx, respectively.
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The problem of mutual orthogonality of the nonproper vibrations (19) is addressed
by the following lemma proven in the appendix:

Lemma 3. Let the coordinate system be chosen in such a way that the coordinate origin
is situated in the centre of mass of the unperturbed molecule, and that coordinate axis
coincide with the principal axis of this molecule. Then the nonproper vibrations (19)
satisfy orthonormality relations (3).

In what follows we will assume that besides translations and rotations there are
no other nonproper vibrations. In other words, there are no such modes as free rotation
around some molecular axis, etc. If this is not the case, one has to orthogonalize all such
nonproper vibrations explicitly with nonproper vibrations (19).

Since all proper vibration®; have nonzero frequency, they are automatically or-
thogonal to nonproper vibrations (19):

(Pr:IM|D;) = (D7 IM|D;) = (D7 IM|D;) =0,

20
(PrxIM[®;) = (Pgy IM|D;) = (PpIM[D;) = 0. (20)

These relations express the requirement that during molecular vibration the cen-
tre of mass is not displaced, and that no vibration contains any component of angular
momentum. For example, one has explicitly

(D7 IM[D;) = " mgfox|D;) =0

and
(Pr:IMID:) = D ma[xal@y|®;) — yolox|®;)] = 0.
o
The first expression tells thatcomponent of the molecular centre of mass is not
displaced during molecular vibratioh;, and the second expression tells that during this
vibration there is no rotation aroundaxis.
Using (19) the expression (10) for the perturbed vibration can be written as

3 3n— e
d> |‘ES)
i) = [ZT |Pr7) XSjRS@RS ] Z popnrven LA
where coefficientd, andR; are
1 »
715 E—] Z C'L’Sa
‘/lﬁ J (21b)
R, = \/I_x Xt:[ytctz e ty]

and analogously for the coefficienks andR;.
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In a similar way, one eliminates nonproper vibrations from the expression (9a):

3n—6

11 yuye  Zuze (x| ®,) (D, |Tx)
Sztx X = | 75 ! L ! L , 22a
ez () JM+IZ+5}+Z e — (222)
XV e (x| ®) (D] Ty)
Q. . (e) = — 2K Al bt VA Rt LR 22b
ey (€) = = +ZZ p— (22b)

Remaining matrix elemen®,,, ., = Qe =@ Ly =

Ty,my’? TZ, TZ,1Ly
and®,. .. = Q%  _are obtained by a cyclic substitution in (22a) and (22b).

X,
In the case o;?nonlinear molecules the summation pirerelations (21) and (22) is
performed ove(3rn—6) proper vibrations, while the contribution of nonproper vibrations
is taken into account by the first terms in those relations. In the case of linear molecules,
each term containing moment of inertla = 0 along the molecular axis should be
omitted, and summation is performed o8t — 5) proper vibrations.
Similar explicit relations are obtained in the case of singular solutions, which we

omit here for the sake of simplicity.

4.  Orthonormalization of perturbed vibrations

In analogy to (3), perturbed vibrations can be orthonormalized according to
(W IM + AM|W)) = .- (23)

Vibrations belonging to different frequencies are automatically orthogonal to each
other. In particular, each proper vibratidn, is orthogonal to perturbed nonproper vi-
brations|Wr,) and|Wg,):

(WrsIM + AM[W;) =0, (Vg IM + AM|¥y) =0, s=123 (23a)

Relations (23a) follow from the general form of relations (6). However, it is in-
structive to give an independent derivation of those relations. This provides an indepen-
dent verification of the validity of the LRP approach.

Perturbed molecule has in general different centre of mass and different principal
axes from the unperturbed molecule. Hence, perturbed nonproper vibrpligpsand
|Wr,) usually differ from unperturbed nonproper vibratigds,) and|®x,). However,
since the perturbed and the unperturbed molecule have the same geometry, each transla-
tion and each rotation of the perturbed molecule is a linear combination of translations
and rotations of the unperturbed molecule. Conditions (23a) are, hence, equivalent to
the conditions

(D7, M + AM|¥;) =0, (Pgs|M + AM|¥) =0, s=12 3. (23b)
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Assume that perturbed vibratiowr, is cardinal, and consider the first relation
in (23b). Inserting expression (10) for the cardinal vibratiBninto this relation one
finds

(<I>Ts||\/| + AMI%)

<1>| )C. Y (@i]Tp)Cs
Z P (@M ) +ZZZ P (| AM D).

Ep — )‘z

(24)
Due to (3), all terms in the first sum of (24) vanish, except for the term involding:
®r,. Further, from (19a) and (7)
(D7,| AM|D;) ZAm (Ts]D;).

Hence, the right-hand side of (24) equals

- <q)Ts|tp>Ctp +— |: Szus,tp(gk)ctp:|Amu-
€k TP M ® TP

However, according to (11) the quantity in the brackets eqia(s;)Cl,; = —C,;/
exAm,, while (19a) implies(®7,|tp) = SSP/W. One thus finally obtaingd,,|M +
AM|¥) = 0. This shows that each perturbed vibration (10) is orthogonal to the unper-
turbed translatiord ;.

Consider now unperturbed rotatiofks,, for example, a rotatiod z,. From (19b)
and (7) one obtains

(Pre|AM|D;) =

1 4
T > Ame[ye (2| @) — 2o (Ty|D:)].

Hence, one finds that the expressidrg,|M + AM|¥;) equals

1 &S
g Z Z (cDRx|Tp>CTp
T p

1 XL p 3 p 3
+ f Z |:yu Z Z Szuz,rp(gk)crp —2u Z Z Szuy,rp(gk)crpi| Amu-
X T p T p

According to (11) the quantity in the brackets equalsC,, — v,.C,.)/exAm,, while
according to (19b) one hd®g,|tp) = (y:8,p — z:8,)/+/I;. Inserting into the above
expression one obtai®z,|M + AM|¥) = 0.

Since perturbed translations and rotations are linear combinations of unperturbed
translations and rotations, this proves (23a) in the case Wheis a cardinal vibra-
tion (10). Analogous results are obtained for singular vibrations (15).
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Perturbed vibrations (10) and (15) are not orthonormalized, and hence, these vi-
brations in general do not satisfy (23). However, if the orthonormalization is required,
it can be easily done. If the perturbed vibratiép is nondegenerate, it is automatically
orthogonal to all other perturbed vibrations, and hence, one has only to normalize this
vibration. The problem of mutual orthogonality of the perturbed vibrations can appear
only for degenerate vibrations.

If &, and ¥, are two (not necessarily distinct) perturbed vibrations, they can be
written as linear combinationd, = ), ¢;®; and¥; = ), d; ®;, where coefficients;
andd; are determined by relations (10) and/or (15). Hence,

3n 3n
(WM + AM W) = “cid; + Y cfd; (| AM D). (25a)
i i,j

Thus, the orthonormalization of perturbed vibrations requires calculation of matrix
elements(®;|AM|®;). Using (7) those matrix elements can be expressed in terms of
amplitudes(us|®;):

P 3
(@AM D) =" Amy, Y (D |us) (us|D;). (25b)
" s

This shows that in order to orthonormalize perturbed vibrations, only the ampli-
tudes(us|®;) of the unperturbed vibration®; at atomic siteg: that are affected by the
isotopic substitutions are required. No knowledge of the amplitudes of the unperturbed
vibrations®; at the remaining part of a molecule is needed.

In conclusion, one can normalize perturbed vibrations, which usually extend over
entire molecule, without any detailed knowledge about the molecular structure (force
constants, atomic masses, atomic positions etc.) outside the region affected by the iso-
topic substitutions.

5. Singleisotope substitution

Consider two moleculed and B, which are identical except for a single isotopic
substitution at atomic site. In this case perturbation (7) reduces to

3
AM = Am; Y |rs)(s|.
Here Am, is the isotope mass change of the atonwhile |zs) is a unit displacement of
this atom in thesth coordinate direction.
Applying theorem 1 to this case, one finds that¢ {A;} is an eigenvalue of the
perturbed isotope equation if and only if it is a root of the functfiia)

I3

Q
(e) + A

f(e) = =0, (26)
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wheref(¢) is a 3x 3 matrix with matrix elements

3n

;) (D;
stp(g) = Z W (27)

1

and wherd 3 is a unit 3x 3 matrix.
If one eliminates nonproper vibrations according to (22), matrix elements of a ma-
trix £ can be written in a more explicit form

11 2 227 328 (o)) (®;]ex)
Q. (e)==-|= 424 Akl ANt Ly 28
©) e[M+IZ+1y]+Zi: e — (282)
Xeye o (x| D) (D] Ty)
Q. ()= @ (¢) = 12 ATXI®i)ilTy) 280
(&) =2}, (¢) A E py—y (28b)

Cyclically one obtains remaining matrix elemerss,(s), 2,.(¢), 2,.(¢s) =
QF (e) and Q. (e) = @7 (¢).
Further, ife, ¢ {A;} is a perturbed eigenvalue, each state of the form

2 (®jlTs)Cs
y,) = = 2 ), 29
W) ; 1) (29)
where coefficients”; are components of a column vecirwhich is the (nontrivial)
solution of

[sz(ek)Jr 'A3 }czo, (30)

ExAmy

is a perturbed vibration corresponding to this eigenvalue. In addition, coeffigignts
satisfy

Cy, = —g Am (Ts|Wy). (31)

Perturbed vibration (29) can be written in a more explicit form

173 3 306 |25)C,
|\Ijk> = g[z Tslq)Ts> + ZRS|CDRS>] + Z %lq)])’ (32&)
s K j J

where
Cs ytcz - chy
T, = , Ri=R, =22 _°T2) 32b
\y m 1 X \/K ( )

and cyclically for coefficient®k, and R;. Each perturbed proper vibraticky, is, thus, a
linear combination of unperturbed nonproper vibrations (translations and rotadens)
and®, and unperturbed proper vibratiods. Translations and rotationB;, and ® g,
compensate for the recoil introduced by the isotope mass change
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The above relations are valid for cardinal solutions, and they apply directly to non-
linear molecules. In the case of linear molecules, each term containing moment of in-
ertial, = 0 should be omitted, and the summation is performed ¢8er— 5) proper
vibrations.

Similar relations are obtained for singular solutions.

6. Conclusions

The above two theorems, in conjuncture with lemmas 1-3 and explicit relations
(21) and (22), give a complete solution to the vibrational isotope effect in the harmonic
approximation. The obtained relations produce all perturbed frequencies and all the
corresponding vibrations.

In order to obtain perturbed frequencies and vibrations, no information about force
constants is required. These perturbed quantities depend only on the unperturbed fre-
quenciesy; = +/A; /2, on the changeam, of the masses of atomsthat are substi-
tuted by an isotope, and on the amplitudes|®;) of the unperturbed vibration®,; at
the positions of these atoms. No information on the amplitydesd;) of the vibra-
tions ®; at atomsw that are not substituted by an isotope is required. This applies in
particular to the normalization of the perturbed vibrations. In conclusion, perturbed fre-
guencies and vibrations do not depend on the unperturbed amplitudes at any atom which
is not replaced by an isotope. This is a remarkable result. Conceptually it shows that
the perturbed frequencies and vibrations do not depend on any fine details of molecular
structure outside the region affected by the perturbation. Allinformation due to the mole-
cular region unaffected by the perturbatitvM is condensed in the global information
about unperturbed frequencies= /A;/2x. In addition, the information about the un-
perturbed amplitude&s|®r,) and(rs|Dg,) of the nonproper vibration®;, and ® g,
can be replaced by the information about the coordinate positians., z.) of those
atoms that are substituted by an isotope, and by four global characteristics: total molec-
ular massM of the unperturbed molecule, and three principal moments of ingsti
and/, of this molecule.

Though the obtained LRP relations express each perturbed vibrdtipmas a lin-
ear combination of unperturbed vibratiofbs, those relations do not explicitly specify
amplitudes(as|¥;) of the perturbed vibrationgl,) at those atoms that are not substi-
tuted by an isotope. However, if one knows matrix eleme®gO|® ;) of an observ-
able O between the unperturbed vibratiofi;), then those relations produce matrix
elements(¥,|O|¥,) of this observable between any two perturbed vibrations. This is
usually all what is required, and in this sense the obtained LRP relations provide a suffi-
ciently complete specification of all perturbed vibrations.

In general, it is not important how frequencies and unperturbed amplitudes
(ts|®;) were obtained. These quantities can be obtained by solving the unperturbed
eigenvalue equation (2) with some assumed force field, in a standard way. However,
these quantities can be also obtained in many other ways. For example, one can use
experimental data for the unperturbed frequencies. Concerning unperturbed amplitudes,
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in some cases these amplitudes can be obtained from the molecular symmetry alone [4].
In the case of linear and out-of-plane vibrations of planar molecules these amplitudes
can be obtained from the experimental frequencies of selected monosubstituted iso-
topomers [5], etc. In this later case the entire information about the unperturbed system
is completely reduced to the experimental data: frequencies of the unperturbed molecule,
and frequencies of few selected monosubstituted molecules.

An additional point to emphasise is that the information required to solve the per-
turbed problem by the LRP method is relatively small. In order to find all perturbed fre-
guencies and vibrations one has to kn@w — 6) unperturbed vibrations;, 3o (3n — 6)
unperturbed amplitudeges|®;), o mass differenceam., the total molecular mas¥,
and the three moments of inertia along principal axis. This totals to approximately 9
quantities. Ifp < n, which is usually the case, this is substantially less than approx-
imately %:2/2 force constants. Thus, the LRP approach requires much less data, than
the standard approach with force constants. Of course, in a standard approach one can
use various models which utilise reduced number of force constants [1]. Those models
are based on some plausible assumptions, such as the assumption of central forces, the
assumption of valence forces, and alike [1]. However, due to neglect of some force con-
stants, all such models are only approximate, while the suggested LRP approach is in
the harmonic approximation exact.

Finally and not the least important, one finds that the operation count for the solu-
tion of the LRP equations is of the ordex/3), while operation count for the solution
of the perturbed equation (6) in a standard way is usually of the ordeh (2,3]. Thus,
in the case of large molecules (hiQy LRP approach is numerically much faster than the
standard approach.

Appendix
A.1. Proof of theorems 1 and 2

One can show that theorems 1 and 2 are a special case of much more general low
rank perturbation (LRP) theorems [2,3]. However, we prefer to give here an independent
derivation of these theorems. This is less time consuming than to cite general LRP theo-
rems, and in addition, it has the advantage of illustrating the spirit of the LRP approach.

Multiplying relation (6) from left by(®;| and using (2) one obtains

(ek — 2i)(Pi IM[Wy) = —er(Pi|AM[Wy). (A.1)

Also from relation (3) one finds

3n

I =) 10:)(PIM, (A2)

wherel is a unit operator.
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Relation (A.1) is our starting relation for the derivation of theorems 1 and 2. Con-
sider, first, theorem 1.

Let g, ¢ {A;}. Dividing both sides of (A.1) bye; — A;), multiplying from left
by |®;), summing ovei and using (A.2) one obtains

(@AM %),
|W) ——SkZ Py D;).

Using (7) this can be written as relation (10) where coeffici€ntsare given by (12).
Multiplying (10) from left by —e; Am,, (ps| and using (12) one obtains

p 3
Cpus = —exldmy, Y Y Rusop(e)Crp. p=1....p,s=123,

where,, -, (¢) is given by (9a). Dividing both sides of this relation byAm, one
obtains (11). This is a linear set opJelations in $ unknownscC,,, and it has a
nontrivial solution if and only if determinant of a system (11) vanishes. Thus, one obtains
condition (8). This proves that each eigenvadyet {1;} of relation (6) satisfies (8) and
also that the corresponding eigenstate is (10) where coeffiogptsatisfy (11). In
addition, those coefficients are given by (12). Tracing the above derivation backwards
one finds that the inverse is also true. Thus, eachdodt{A;} of (8) is an eigenvalue of
relation (6). Also, each state (10) where coefficientssatisfy (11) is the corresponding
eigenstate of (6). This proves theorem 1.

One proves theorem 2 along the same lines as theorem 1.

Let A; be an-degenerate unperturbed eigenvalue, anfiitet) be the correspond-
ing eigenstates. Assume that= 1 is an eigenvalue of the perturbed equation (6). We
again obtain relation (A.1). However, this time one can divide both sides of this relation
with (¢, — A;) where there is a conditioh; # ¢,. Multiplying the obtained relation
from left by |®;) and summing over (A; # &), one has to add to both sides of thus
obtained relation quantity ", |®;,)(® ;. |M|¥;). Now one can use relation (A.2) which
gives (15) where coefficients,; and D, are given by (17). In order to obtain relations
(13) and (16) one now multiplies (15) from left bys, Am, (us| and also by ® ;. |M.
Remaining part is similar to the proof of theorem 1.

A.2. Proof of lemma 1

Let the equation (11) havglinearly independent solutior® (r = 1,2, 3, ..., 7).
Each of these solutions generates according to (10) an eigengfatef the perturbed
eigenvalue equation. All these eigenstates correspond to the same eigenpvaiise
sume that these eigenstates are linearly dependent. Then there exists a nontrivial linear
combination of these eigenstates that equals zero:

u Y (@iltp) Y e C
PALAEDY ; Zi®,) =0.

Er — )\.

r i
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Since |®;) are linearly independent, this impligs . ZP (®iltp) 3, c.Cy;, = O for
eachi. Since|®;) form a complete set, this impli€s . Zp ltp) Y, ¢ Cy, = 0. How-

ever, vectorgrp) are linearly independent, and hengde, ¢,Cy, = 0for eachr andp.

This last relation implies that vecto® are linearly dependent, contrary to the assump-
tion. This proves that vectord’;) must be linearly independent, and hence, degeneracy
of each cardinal eigenvalug equals the number of linearly independent solutions to the
matrix equation (11). However, the number of linearly independent solutions to the ma-
trix equationAx = O whereA is a square matrix is by definition nullity of this matrix [6].

On the other hand, the rank of a matrix is defined as a number of linearly independent
columns, and in the case of a square matrix this equals the number of linearly indepen-
dent rows [6]. This proves lemma 1, i.e., that the degeneraey efuals nullity of a
matrix 2(s;) + AM /g, In a similar way one proves lemma 2.

A.3. Derivation of relations (19) for nonproper vibrations

Let &7, be a translation in the-direction. This translation is a linear combination
of unit displacementgx.x)

|Or,) = Q) lax),

where the constar® is determined by the normalisation condition (3). Using orthonor-
mality relations(ar|St) = 8.46,, one finds

n 3
(D7 M[Pr) =) Y mo(rilar) {ar|dry)

n

= o (@rolax) x| Pry) = 02M =1

o

and similarly for translations im- andz-direction. Hence, follow the relations (19a).

Let now @, describe rotation for some small angdearound thez-axis. Dis-
placements in the- and y-direction of aton are proportional te-y, |x,) andx,|y.),
respectively. The stat®y, is, hence, a linear combination

1) = 0> [Xalya) — Yalxa)].

ConstantQ is again determined by the normalisation condition (3):

n

(cDRz“v' |CDRz> = Z <¢Rz|xa>mzx (xozlq)Rz> + Z <¢Rz|yoz>ma (yozchRz>

o

= Q2 Z(xs + ys)ma — QZIZ = 1’
o
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wherel, is moment of inertia aroungraxis. Analogous relations are obtained for rota-
tions ®¢, anddg,. Hence, follow the relations (19b).

A.4. Proof of lemma 3

According to the above derivation of nonproper vibrations, all these vibrations are
normalized. It remains to be shown that these vibrations are also orthogonal to each
other, provided the coordinate origin is situated in the molecular centre of mass, and
provided the coordinate axes coincide with the principal axes of the unperturbed mole-
cule.

One easily shows that translations (19a) are mutually orthogonal. For example,

1 /
(@7 M|d7y) = — > (ex|mala’y) =0,

Concerning the orthogonality of rotations (19b) to translations (19a) one finds, e.g.,
1

Mly ; maza

and similarly for other possible combinations. If the coordinate origin is situated in the
centre of molecular mass, right-hand side of this expression is zero. This shows that the
rotations (19b) are orthogonal to the translations (19a), provided the coordinate origin is
situated in the molecular centre of mass.

It remains to be shown that rotational states (19b) are orthogonal to each other.
Consider, for example, rotatiors,, and®g,. One finds

(cDTx|M |q>Ry> = -

(PrxIM|Pry) = (A.3)

1
e My YaXg-
,—le}v; aYarta

Assume that coordinate axes coincide with the principal axes of a molecule. In
this case one coordinate axis has the greatest possible moment of inertia, another has
the smallest possible moment of inertia, while the third axis has an intermediate value
for the moment of inertia [7]. Let moments of inertia having an extreme value be
I, = >, 02+z)m, and I, = Y (x2+z2)m,. Since these moments of inertia
assume extreme values, they must be stationary with respect to an infinitesimal rotation
of coordinate axes, i.es/, = §1, = 0. Consider an infinitesimal rotatiop around
z-axis. New coordinates are

/

=z, X =x+¢y, y=—-¢x+y,

whereg is infinitesimal. Hence,

ol = Z(y/g + z’z)ma — Z(ys + zg)ma = —2¢ Zxayama =0.

o o
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In a similar way infinitesimal rotations around and y-axis imply
Z YaZlaMg = Z ZaXgMy = 0.
o o

Hence and from (A.3){(® . |M|Pg,) = 0, and similarly for other rotations. This
proves that, provided the coordinate axes coincide with the principal axes, rotations (19hb)
are mutually orthogonal.

Note that both conditions are necessary in order for improper vibrations (19) to be
orthonormalized. It is obvious from the above derivation that if the coordinate system is
not in the molecular centre of mass, there is at least one rotation, which is not orthogonal
to all translations. Similarly, if the coordinate axes do not coincide with the principal
axes, at least one pair of rotations is not mutually orthogonal.
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